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3 Instituto de Fı́sica Teórica, Universidade Estadual Paulista, Rua Pamplona, 145, 01405-900,
São Paulo, SP, Brazil
4 Department of Information and Communication Sciences, Kyoto Sangyo University,
Kyoto 603-8555, Japan

Received 9 November 2004, in final form 10 February 2005
Published 18 May 2005
Online at stacks.iop.org/JPhysA/38/4989

Abstract
We consider a new type of point interaction in one-dimensional quantum
mechanics. It is characterized by a boundary condition at the origin that
involves the second and/or higher order derivatives of the wavefunction. The
interaction is effectively energy dependent. It leads to a unitary S-matrix for
the transmission–reflection problem. The energy dependence of the interaction
can be chosen such that any given unitary S-matrix (or the transmission and
reflection coefficients) can be reproduced at all energies. Generalization of the
results to coupled-channel cases is discussed.

PACS numbers: 03.65.−w, 03.65.Nk, 03.65.Ge

1. Introduction

In one-dimensional quantum mechanics there are point interactions that can be interpreted as
self-adjoint extensions (SAEs) of the nonrelativistic kinetic energy operator p2/(2m) where
p = −ih̄ (d/dx) and m is the mass of the particle of the system under consideration. We use
units such that h̄ = 1 and 2m = 1 in the following. Each of the SAEs can be characterized by
the following boundary condition that applies to any wavefunction ψ(x) at x = 0 [1–4]:(

ψ ′
+

ψ+

)
= U

(
ψ ′

−
ψ−

)
, U = eiθ

(
α β

δ γ

)
, (1)

where ψ ′ = dψ/dx,ψ± = ψ(±0) and ψ ′
± = ψ ′(±0). (We do not consider cases in which

the two half-spaces of x > 0 and x < 0 are disjoint.) It is understood that ψ(x) and ψ ′(x)

are discontinuous at x = 0 in general but, at x �= 0, ψ(x) is twice differentiable. The matrix
elements α, β, γ and δ are all real parameters (independent of x), which are subject to the
condition

αγ − βδ = 1. (2)

0305-4470/05/224989+10$30.00 © 2005 IOP Publishing Ltd Printed in the UK 4989

http://dx.doi.org/10.1088/0305-4470/38/22/020
http://stacks.iop.org/ja/38/4989


4990 F A B Coutinho et al

Only three of α, β, γ and δ are independent. The phase θ , another real parameter of U, is
unimportant in stationary one-body and two-body problems [4]. In many-body problems θ

may have subtle implications; see, e.g., [5]. Albeverio et al pointed out that θ can play a
significant role in non-stationary systems [6]. We do not consider such situations. Let us
set θ as

eiθ = −1, (3)

throughout this paper as was done in [1–3]. The point interaction described above is energy
independent in the sense that the parameters of U are all independent of energy.

The purpose of this paper is first to generalize boundary condition (1) such that the
matrix elements of U become energy dependent. Then we explore the implications of such a
generalization. In section 2 we set up energy-dependent boundary conditions. In section 3 we
examine the transmission–reflection problem. In section 4 we examine the relation between
the energy-dependent boundary condition and those derived by Griffiths [7]. In sections 2–4,
we focus on stationary states with definite energies. The boundary condition however can be
used for non-stationary states, which we examine in the appendix. The results are summarized
and discussed in section 5.

2. Energy-dependent boundary condition

In this section we construct energy-dependent boundary conditions. Let us begin with a simple
illustration. Assume that

U = −
(

α β

δ γ

)
=

(
1 2c0

0 1

)
, (4)

where c0 is a real constant. Then we have

ψ ′
+ − ψ ′

− = c0(ψ+ + ψ−), (5)

ψ+ − ψ− = 0. (6)

The point interaction that is specified by (5) and (6) is the δ-function potential 2c0δ(x). Now
let us replace (5) with

ψ ′
+ − ψ ′

− = −c1(ψ
′′
+ + ψ ′′

−), (7)

where ψ ′′ = d2ψ/dx2 and c1 is a real constant. Assume that there is no interaction at x �= 0.
For a stationary state with energy E we obtain

ψ ′′ = −Eψ (x �= 0), (8)

where E can be positive or negative. Equations (7) and (8) together with (6) lead to

U =
(

1 2c1E

0 1

)
, (9)

which depends on E. This U represents an energy-dependent δ-function potential.
We assumed above that there is no interaction except at x = 0. This restriction is not

essential. Suppose there is a finite range potential V (x) other than the point interaction at
x = 0. Assume for simplicity that V (x) is continuous at x = 0. Then E of (8) and (9) has
to be replaced with E − V (0). In the following we assume that V (0) = 0 for simplicity but
there is no difficulty in incorporating nonzero V (0).

The example given above can be extended as follows. Assume that c(E) is a function of
E such that

c(E) =
∞∑

ν=0

cνE
ν, (10)
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where cν is a real constant. Replace (5) with

ψ ′
+ − ψ ′

− =
∞∑

ν=0

(−1)νcν

[
ψ(2ν)

+ + ψ
(2ν)
−

]
, (11)

where ψ(2ν) = d2νψ/dx2ν . Here it is understood that ψ(2ν) is well-defined except at x = 0.
We then obtain

U =
(

1 2c(E)

0 1

)
. (12)

We now turn to a more general situation. Boundary condition (1) together with (2) can
be recast into the following form:

ψ ′
+ − ψ ′

− = λ1(ψ+ + ψ−) − λ2(ψ
′
+ + ψ ′

−), (13)

ψ+ − ψ− = λ2(ψ+ + ψ−) − λ3(ψ
′
+ + ψ ′

−), (14)

where λ1, λ2 and λ3 are real parameters. Then U turns out to be

U = −
(

α β

δ γ

)
= −

(
1 − 2(1 − λ2)/	 −2λ1/	

2λ3/	 1 − 2(1 + λ2)/	

)
, (15)

where

	 = (1 + λ2)(1 − λ2) + λ1λ3. (16)

It is understood that 	 �= 0. The three parameters λ1, λ2 and λ3 are independent of one
another. They are related to α, β, γ and δ by

2λ1 = −β	, 2λ2 = 1

2
(α − γ )	, 2λ3 = δ	, 	 = 4

2 − α − γ
. (17)

Boundary condition (4) is a special case in which λ1 = c0 and λ2 = λ3 = 0. Apart from eiθ

which is unimportant in the context of this paper, the boundary condition consisting of (13)
and (14) is completely equivalent to (1) and (2). Boundary conditions in the form of (13) and
(14) have recently been used in relation to the Fermi pseudo-potential in one dimension [8].
Parameters λ1, λ2 and λ3 respectively, correspond to g1/2, g2/2 and g3/2 of [8, 9].

Any of λ1, λ2 and λ3 can be made energy dependent in the way we illustrated with
(10)–(12). For example, assume that

λ2(E) =
∞∑

ν=0

dνE
ν, (18)

where dν is a real constant. Then we make the following substitutions in (13) and (14):

λ2(ψ
′
+ + ψ ′

−) →
∞∑

ν=0

(−1)νdν

[
ψ(2ν+1)

+ + ψ
(2ν+1)
−

]
, (19)

λ2(ψ+ + ψ−) →
∞∑

ν=0

(−1)νdν

[
ψ(2ν)

+ + ψ
(2ν)
−

]
. (20)

The λ1 and λ3 can be dealt with similarly. In the following it is understood that α, etc, and λ1,
etc, are in general energy dependent.
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3. Transmission and reflection problem

Let us consider the transmission–reflection problem assuming that the point interaction that
we examined in section 2 is the only interaction in the system. If a wave of a given wavelength
is incident from the left, the wavefunction can be written as [10]

ψ(x) =
{

eikx + RL e−ikx for x < 0
TL eikx for x > 0

, (21)

where k > 0 is related to the energy by E = k2. The wavefunction of the case in which the
wave is incident from the right can be written in a similar manner, with coefficients TR and
RR . The S-matrix is a 2 × 2 matrix, which is related to T and R by [10],

S =
(

S++ S+−
S−+ S−−

)
=

(
TL RR

RL TR

)
. (22)

The suffix ± of S++, etc, refers to the direction of the wave propagation. By using the U of
(15) we can determine the T and R and then the S-matrix explicitly as [3]

S = [−β + k2δ + ik(α + γ )]−1

( −2ik β + k2δ − ik(α − γ )

β + k2δ + ik(α − γ ) −2ik

)
(23)

= [
k2λ3 − ik

(
1 − λ1λ3 + λ2

2

)
+ λ1

]−1
(−ik

(
1 + λ1λ3 − λ2

2

)
k2λ3 − 2ikλ2 − λ1

k2λ3 + 2ikλ2 − λ1 −ik
(
1 + λ1λ3 − λ2

2

)
)

. (24)

This is a unitary matrix. Note that TL = TR , which means that the boundary condition
conforms to time-reversal invariance [4, 10]. In the following we suppress suffices L and
R of T.

If parameters α, etc, and λ1, etc, are independent of energy, the point interaction can
support one or two bound states. Let the wavefunction of a bound state be

ψ±(x) = C± e−κ|x|, (25)

where κ > 0 and C± is a constant coefficient. The suffix ± refers to the sign of x. The energy
of the bound state is given by E = −κ2. The κ is determined by

δκ2 + (α + γ )κ + β = 0, (26)

which leads to S(k = iκ) = ∞. If α, etc, are functions of E = −κ2, then the number of
bound states can be different from that of the case of energy-independent α, etc. Let us add
that the N-body problem with the same point interaction can be solved exactly in the same
way as was done in [11]. The number of bound states does not depend on N. The energy of
the bound state is again given by (26) of [11], i.e., E = − 1

6N(N2 − 1)κ2, where κ is the same
as that of (25) and (26).

When time-reversal invariance holds, which is the case throughout this paper, the S-matrix
elements can be expressed in terms of three energy-dependent parameters. For example, they
can be written as

T = 1
2 (e2iη0 + e2iη1), (27)

RL = 1
2 (e2iη0 − e2iη1) e2iε, RR = RL e−4iε . (28)

Here η0(E) and η1(E) are the phase shifts in two partial waves with even and odd parity
respectively, and ε(E) is the mixing parameter. For the definitions of these quantities, see [10].
Note that the number of parameters of the S-matrix is the same as the number of parameters of
the SAEs. This fact has an important implication as we discuss towards the end of section 5.
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Suppose the S-matrix is given at all energies. Then one can determine an energy-
dependent point interaction that reproduces the given S-matrix. To be explicit, α, etc, of the
point interaction can be determined by the following:

α = −1

2

(
1

T
+

1

T ∗ +
RL − RR

T

)
, (29)

β = ik

2

(
1

T
− 1

T ∗ − RL + RR

T

)
, (30)

γ = −1

2

(
1

T
+

1

T ∗ − RL − RR

T

)
, (31)

δ = − i

2k

(
1

T
− 1

T ∗ +
RL + RR

T

)
. (32)

Parameters α, etc, so determined are real and satisfy (2). Once α, etc, are determined, λ1, etc,
can be found through (17). It is obvious that the number of independent parameters of the
SAEs cannot exceed the number of independent parameters of the S-matrix.

Consider the following two models, A and B. Model A is defined by means of the
Hamiltonian

H = p2 + V (x), (33)

where p2 is the kinetic energy operator and potential V (x) is real and of a finite range. Model B
is specified by means of an energy-dependent point interaction that we have introduced. Start
with model A and determine its S-matrix for all energies by solving the Schrödinger equation
with H of (33). (This S-matrix can be imagined as a set of ‘experimental data’ of the model
system.) Next set up model B such that it is equivalent to model A as far as the S-matrix
is concerned. Bound states, if any, have the same energies. Models A and B, however, are
not completely equivalent. The wavefunctions of the two models agree with each other in
the asymptotic region but are different within the range of potential V (x). If we solve a
many-body problem with the interactions of models A and B, we will find different results
such as different binding energies. A question that would naturally arise here is: if one
starts with model B that has been arbitrarily specified in terms of the phase shifts and mixing
parameter, can one find V (x) of model A such that the two models share the same S-matrix?
This is not always possible. For example, if the given phase shifts of model B do not
conform to the Levinson theorem [12, 13], we cannot find V (x) that reproduces such phase
shifts.

The energy-dependent point interaction that we have introduced above has a similarity
to the pseudo-potential in three dimensions that Huang and Yang constructed a long time
ago [14]. Their pseudo-potential can exactly reproduce any given partial-wave phase shifts
at all energies. It has many interesting applications. Huang and Yang pointed out that
their pseudo-potential is not a Hermitian operator. As they remarked, the non-Hermiticity
of the pseudo-potential requires that some care be exercised when one applies the usual
perturbation formulae in an actual calculation (for a many-body system). Essentially the same
remark applies to our energy-dependent point interaction. We should however mention the
following difference. Huang and Yang’s pseudo-potential, which is an extension of Fermi’s
pseudo-potential [15, 16], is an effective potential that is meant to be used in the Born
approximation. In contrast, our point interaction is a ‘true’ potential that is meant to be treated
exactly.
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Returning to the one-dimensional case, consider two arbitrary normalizable wavefunctions
ψ(x) and φ(x) that are both subject to boundary condition (1) at the origin with energy-
dependent parameters. In order for the kinetic-energy operator −d2/dx2 combined with the
boundary to be self-adjoint, we require [3, 17]

−
∫ ∞

−∞
(φ∗ψ ′′ − φ′′∗ψ) dx = [(φ∗ψ ′ − φ′∗ψ)]+0

−0 = 0. (34)

By using (1) we can reduce (34) to

(φ∗
−,−φ′∗

−)
(
U−1

φ Uψ − 1
) (

ψ ′
−

ψ−

)
= 0, (35)

where matrix Uφ(ψ) is associated with the boundary condition for φ (ψ). Equation (35)
requires that Uφ = Uψ and hence the boundary condition be independent of energy. If
boundary condition (1) is energy dependent, the point interaction represented by (1) is not
self-adjoint. Interestingly enough, however, it leads to a unitary S-matrix. The energy-
dependent boundary condition guarantees the continuity of the probability current across the
boundary and the conservation of probability.

4. Griffiths’ boundary condition

Assuming the potential

V (x) = 2cδ(n)(x) = 2c
dnδ(x)

dxn
, (36)

where c is a real constant, Griffiths [7] derived the boundary conditions

ψ ′
+ − ψ ′

− = (−1)nc
[
ψ(n)

+ + ψ
(n)
−

]
, (37)

ψ+ − ψ− = (−1)(n−1)nc
[
ψ(n−1)

+ + ψ
(n−1)
−

]
. (38)

Here we have replaced Griffiths’ c with 2c. The derivation of the above conditions involves
integrals such as

∫
δ(n)(x)ψ(x) dx. In dealing with these integrals, integration by parts is

liberally done disregarding possible discontinuities of ψ(x) and its derivatives. As remarked
in [3, 8] the derivation as such is questionable. Nevertheless (37) and (38) are interesting
conditions. It is straightforward to work out the transmission–reflection problem with
boundary conditions (37) and (38). The resulting S-matrix, however, turns out to be unitary
only if n = 0, 1 or a positive even integer.

If n = 0 (37) and (38) are trivially reduced to those for the δ-function potential, i.e., (5)
and (6). Let us examine the cases with even n = 2ν and odd n = 2ν + 1 separately. When
n = 2ν with ν > 0, (37) and (38) respectively, become

ψ ′
+ − ψ ′

− = c
[
ψ(2ν)

+ + ψ
(2ν)
−

]
, (39)

ψ+ − ψ− = −2νc
[
ψ(2ν−1)

+ + ψ
(2ν−1)
−

]
. (40)

These two equations can be reduced to (13) and (14) with λ1 = (−E)νc, λ2 = 0
and λ3 = (−E)ν−1(2νc). Al-Jaber examined the case of n = 2 in detail [18]. He
calculated the transmission and reflection coefficients and confirmed that unitarity holds,
i.e., |T |2 + |R|2 = 1. We can reproduce Al-Jaber’s transmission and reflection coefficients by
substituting λ1 = −Ec, λ2 = 0 and λ3 = 2Ec into (24).

In passing let us comment on some of Al-Jaber’s results. In examining the transmission–
reflection problem he assumed that c > 0 but the transmission and reflection coefficients that
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he obtained are valid irrespective of the sign of c. He claimed that there are two bound states
but actually only one of them (with k > 0 in his notation) is a bound state. The wavefunction
of the other state (with k < 0) is not normalizable. It is interesting that the bound state exists
irrespectively of the sign of c. Al-Jaber stated, below his equation (16), that ‘This (unitarity of
the S-matrix) implies that the Hamiltonian under investigation is a self-adjoint operator’. This
statement is incorrect. If n is a positive even integer, condition (35) for the self-adjointness is
not satisfied unless φ and ψ represent stationary states of the same energy.

If n = 2ν + 1, (37) and (38) respectively become

ψ ′
+ − ψ ′

− = −c
[
ψ(2ν+1)

+ + ψ
(2ν+1)
−

]
, (41)

ψ+ − ψ− = (2ν + 1)c
[
ψ(2ν)

+ + ψ
(2ν)
−

]
. (42)

Equation (41) leads to λ1 = 0 and λ2 = (−E)νc. On the other hand (42) requires
λ2 = (2ν + 1)(−E)νc and λ3 = 0. Therefore (41) and (42) can be reduced to (13) and
(14) only if ν = 0, i.e., n = 1. It is crucial that the terms with λ2 appear in (13) and (14)
in a specific manner. When the boundary conditions cannot be reduced to (13) and (14), the
interaction represented by the boundary conditions fails to satisfy unitarity. The probability
current of this case is discontinuous across the origin.

Let us add that the point interaction that is associated with Griffiths’ condition with n = 1
is self-adjoint. Note that the parameters in the boundary condition of this case are actually
all independent of energy. The associated point interaction is different from the so-called
δ′-interaction. This aspect was already discussed in detail in [3].

5. Summary and discussion

We have shown how an energy-dependent point interaction in one dimension can be constructed
in a systematic way by means of a boundary condition on the wavefunction at the origin.
The interaction so constructed is not self-adjoint. Nevertheless, when the transmission–
reflection problem is worked out with the potential, the probability current is continuous
across the boundary and unitarity is satisfied. Suppose a set of ‘experimental data’ regarding
the transmission and reflection coefficients of a one-dimensional system at all energies and the
energies of bound states, if any, is given. (It is understood that the data conform to unitarity.)
Then we can construct an energy-dependent point interaction that exactly reproduces the given
data.

We have also shown that Griffiths’ boundary conditions (37) and (38) can be related to our
energy-dependent point interaction if and only if n = 0, 1 or a positive even integer. If n = 0
or 1 the point interaction represented by Griffiths’ boundary conditions is actually independent
of energy and is self-adjoint. If n is a positive even integer, the interaction is not self-adjoint
but is still compatible with unitarity in the transmission and reflection problem. For any other
values of n, i.e., positive odd integers exceeding 1, the interaction is not compatible with
unitarity.

We have focussed on stationary states. The boundary conditions of the form of (11), (19)
and (20) do not contain E explicitly. They can actually be used for nonstationary states as
well. In the appendix we show that the conservation of probability and the continuity of the
probability current across the boundary hold in any non-stationary state that can be represented
as a linear combination of stationary states. We are however concerned about the following
possibility. When the interaction involved is not self-adjoint, the stationary states associated
with it may not form a complete set.
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We have confined ourselves to the one-channel case in this paper but we foresee no
difficulty in extending the results to coupled-channel cases. We pointed out in the one-channel
case that the number of independent parameters of SAEs of the kinetic energy operator
cannot exceed the number of independent parameters of the S-matrix. This statement is valid
irrespectively of the number of coupled channels. Recently the SAEs of the two-channel case
have been examined [8, 19]. It was found that there can be ten-independent real parameters in
the SAEs in the two-channel case [8]. On the other hand, when time-reversal invariance holds,
the S-matrix of the two-channel case can be expressed in terms of a 4 × 4 real symmetric K-
matrix that has ten real (energy-dependent) parameters. This situation regarding the number of
parameters involved is exactly similar to that of the one-channel case (with three parameters).
This convinces us that the ten-parameter family of SAEs that was found in [8] is the most
general one of the two-channel case. This naturally leads to the following generalization: in
the case of N coupled channels, we can have a family of SAEs with N(2N +1) parameters. Let
us add that the relationship between the number of parameters of SAEs of the kinetic-energy
operator and the number of parameters of the S-matrix is also valid in the relativistic case with
the one-dimensional Dirac equation. In this connection, see section 5 of [3].
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Appendix. Non-stationary states

We start with a set of stationary solutions of the Schrödinger equation, φ(k, x) e−iEkt and
φi(x) e−iEi t , where Ek = k2 and Ei represent continuum and discrete energy spectra,
respectively. We normalize them such that

∫ ∞

−∞
φ∗(k, x)φ(k′, x) dx = 2πδ(k − k′), (43)

∫ ∞

−∞
φ∗

i (x)φi ′(x) dx = δi,i ′ . (44)

It is understood that there are a potential in a finite region around the origin and/or a point
interaction that is represented by a boundary condition at the origin. Consider a non-stationary
state described by

ψ(x, t) = 1√
2π

∫ ∞

−∞
f (k)φ(k, x) e−iEkt dk +

∑
i

ciφi(x) e−iEi t , (45)

where function f (k) and coefficient ci are independent of t. This ψ(x, t) satisfies the time-
dependent Schrödinger equation. Its normalization is given by∫ ∞

−∞
|ψ(x, t)|2 dx =

∫ ∞

−∞
|f (k)|2 dk +

∑
i

|ci |2, (46)

which is independent of t and hence the probability is conserved. The ψ(x, t) and ψ(x, 0)

are related by a unitary transformation. With ψ(x, t) it can be shown that the probability
current is continuous at any x and t. Note that, because of (43) and (44), the first integral
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of (46) only involves pairs of stationary wavefunctions φ∗ and φ of the same energy. The
non-selfadjointness of the energy-dependent boundary condition that we pointed out below
(35) does no harm regarding the probability conservation.

In order to gain more insight into the probability conservation, let us examine transmission
and reflection of a wavepacket. For stationary solutions we assume that φ(k, x) has the
asymptotic form of (21) and left–right symmetry for simplicity. For ψ(x, t) we assume the
initial condition at t = 0,

ψ(x, 0) = g(x − x0) eik0x, k0 > 0, (47)

where function g(x − x0) is localized around x = x0 so that ψ(x, 0) represents a wavepacket.
For simplicity let g(x − x0) be a real, smooth function. The factor eik0x of (47) puts the
wavepacket in motion at speed v0 = 2k0. (Recall 2m = 1.) It is understood that x0 � 0 such
that the wavepacket at t = 0 is far to the left, outside the potential region. We denote the
Fourier transform of ψ(x, 0) with f (k),

√
2πf (k) =

∫ ∞

−∞
ψ(x, 0) e−ikx dx =

∫ ∞

−∞
g(x − x0) e−i(k−k0)x dx. (48)

We normalize ψ(x, 0) as∫ ∞

−∞
|ψ(x, 0)|2 dx =

∫ ∞

−∞
g2(x − x0) dx =

∫ ∞

−∞
|f (k)|2 dk = 1. (49)

Being confined in a finite region around the origin, the discrete energy states have no overlap
with ψ(x, 0).

Let us define the following three functions:

ψ0(x, t) = 1√
2π

∫ ∞

−∞
f (k) ei(kx−Ekt) dk, x � 0 or x � 0, (50)

ψT (x, t) = 1√
2π

∫ ∞

−∞
f (k)T (k) ei(kx−Ekt) dk, x � 0, (51)

ψR(x, t) = 1√
2π

∫ ∞

−∞
f (k)R(k) ei(kx−Ekt) dk, x � 0. (52)

Each of these three functions is a solution of the time-dependent Schrödinger equation in the
asymptotic regions indicated. The ψ0(x, t) represents the wavepacket incident from the left
with speed v0 > 0. It can be shown that, until the front end of the wavepacket comes into the
potential region, ψ(x, t) = ψ0(x, t) holds. A peculiar situation arises when v0 is very small
or the width of the incident wavepacket is very small [20]. We do not consider such cases.
When the wavepacket is in the potential region, ψ(x, t) generally behaves in a complicated
manner. In this connection, see for example [21–23]. As t becomes sufficiently large, however,
ψ(x, t) becomes negligible in the potential region and it is reduced to ψT (x, t) + ψR(x, t).
The ψT (x, t) and ψR(x, t), which do not overlap, represent the transmitted and reflected
wavepackets, respectively.

We define the transmission and reflection probabilities for the wavepacket by

PT = lim
t→∞

∫ ∞

0
|ψ(x, t)|2 dx, (53)

PR = lim
t→∞

∫ 0

−∞
|ψ(x, t)|2 dx. (54)

The ψ(x, t) of (53) can be replaced by ψT (x, t). The range of the integral can be extended
to [−∞,∞] because ψT (x < 0, t → ∞) is negligible. The PR can be treated in a similar
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manner. Thus we obtain

PT =
∫ ∞

−∞
|f (k)T (k)|2 dk, (55)

PR =
∫ ∞

−∞
|f (k)R(k)|2 dk. (56)

The probability conservation for the wave packet, PT + PR = 1, simply follows from the
unitarity for stationary states, i.e., |T (k)|2 + |R(k)|2 = 1.
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